

/* We are a self-funded family business

We are people-focused and care about Ethics and Environment */

7* We push frontiers to deliver In Silico Material Design

We bring genuine value to our customers by placing facts over fictions */

/* We have made Crystal Structures Predictable */

Rosta	$\begin{split} & \int e^{-i\hat{k}[\ell-t']/k} \int_{k'}^{t+} (\mathcal{L})/O \\ & \int e^{i\hat{k}[\ell-t']/k} \int_{k'}^{t+} (\mathcal{L})/O \\ & \int e^{i\hat{k}[\ell-t']/k} \int_{k'}^{t+} (\mathcal{L})/O \\ & = e^{i\lambda_{k-1}} e^{-i\lambda_{k-1}} \alpha_{jjk_{k-1}} - e^{i\lambda_{k-1}} e^{i\lambda_{k-1}} \\ & = e^{i\lambda_{k-1}} e^{i\lambda_{k-1}} \int_{k'}^{t+} e^{i\lambda_{k-1}} e^{i\lambda_{k-1}} e^{i\lambda_{k-1}} \\ & \Rightarrow \int e^{i\lambda_{k-1}} e^{i\lambda_{k-1}}$	$\begin{split} & \sup_{J \in \mathcal{J}} \left\{ \sum_{j=1}^{n-1} \hat{h}(\hat{t} - \hat{t}')/\hat{h} \cdot \int_{J}^{n} \hat{f}(\hat{t}' - \hat{t}')/\hat{h} \cdot \int_{J}^{n} \hat{f}_{j}(\hat{t}') \rangle \right\} \\ & \gamma_{n} \hat{h}(\hat{t} - \hat{t}')/\hat{h} \cdot \int_{J}^{n} \hat{h}_{jj,\hat{t},\hat{s}'} \rangle = n \\ & E_{n} \hat{t}_{n} - \hat{t}_{n'} - \hat{t}_{n'} - \hat{t}_{n'} \\ & = E_{n'} - E_{n'} \cdot \int \Omega_{n'}^{n} = E_{n'}^{n} - E_{n'} \\ & \Rightarrow \langle 0 \frac{\eta_{n}^{n}(\hat{t}') _{n'} > \langle n_{n'} - \hat{t}_{n'} \\ & \Rightarrow \\ & \qquad \langle 0 \eta_{n}^{n}(\hat{t}') _{n'} > \langle n_{n'} - \hat{t}_{n'} \\ & \qquad \langle n_{n'} \\ & \qquad$	$\begin{split} & \int_{0}^{0} e^{-i \hat{h} \left(\hat{t} - \hat{t}^{*} \right) / \hat{h}^{*} \left(\hat{t}^{*} \left(\hat{t}^{*} \right) / 0 \right)} \\ & \int_{0}^{0} i \hat{\hat{h}} \left(\hat{t} - \hat{t}^{*} \right) / \hat{h}^{*} \left(\hat{t}^{*} \left(\hat{t} \right) / 0 \right) \\ & E_{n M \pm 4} = E_{n, 1}^{-4} n_{p \pm 4} \rangle = n \\ & = E_{n-} - E_{0} , \Omega_{n+}^{*} = E_{n-}^{*} - E_{0} \\ & \Rightarrow \qquad \qquad$
	$ \begin{cases} : e^{i} E_{\theta}(t+t')/k \langle 0 \frac{\theta}{h}(t) \\ : e^{i} E_{\theta}(t+t')/k \langle 0 \frac{\theta}{h}(t) \\ : \int_{\alpha} \left[\xi_{0}(t_{1}, t', \tau) e^{i\omega r \tau} \right] \\ & \frac{\theta}{h} \frac{1}{h} \left[\left[u_{1} \right] \right] \\ = \frac{\theta}{h} \frac{1}{h} \left[\left[u_{1} \right] \right] \\ = \frac{\theta}{h} \frac{1}{h} \left[\left[u_{1} \right] \right] \\ & \frac{\theta}{h} \frac{1}{h} \left[\left[u_{1} \right] \right] \\ & \frac{\theta}{h} \frac{1}{h} \left[\left[u_{1} \right] \right] \\ & \frac{\theta}{h} \frac{1}{h} \frac{1}{h} \left[\left[u_{1} \right] \right] \\ & \frac{\theta}{h} \frac{1}{h} \frac{1}{h} \left[\left[u_{1} \right] \right] \\ & \frac{\theta}{h} \frac{1}{h} \frac{1}{h} \left[\left[u_{1} \right] \right] \\ & \frac{\theta}{h} \frac{1}{h} $	$\begin{cases} \begin{cases} P_{ij}^{\mu} & P_{ij}^{\mu} &$	$\begin{split} f': &= : E_0(t-t')/k \langle 0 \hat{\psi}_n(t) \\ f_1: &= : E_0(t-t')k \langle 0 \hat{\psi}_n(t) \\ f_2: &= : E_0(t-t')k \langle 0 \hat{\psi}_n(t) \\ f_1(t_N) &= : : : : : : : : : : : : : : : : : : $
	$\begin{split} & \mathcal{F}_{\alpha\beta} \left\{ \left(\underline{f}, \underline{f}, \frac{1}{r}, - \underline{f}^{\prime} \right)^{\alpha} \right\} \left\{ \begin{array}{l} \mathcal{E}^{\prime} \\ \mathcal{E}^{\prime} \\ \mathcal{F}_{\alpha\beta} \\ \mathcal{F}_{\alpha\beta} \left(\underline{f}, \underline{f}, \underline{h} \right) = \left[\begin{array}{l} \mathcal{F}_{\alpha\alpha} \\ \mathcal{F}_{\alpha\alpha} \\ \mathcal{F}_{\alpha\beta} \\ \mathcal{F}_{\alpha\alpha} \\ \mathcal{F}_{\alpha\beta} \\ \mathcal{F}_{\alpha\alpha} \\ \mathcal$	$\begin{split} & \int_{\mathbb{R}^{d}} \left\{ \left(f_{1}, f_{1}^{\dagger}, f_{2}, f_{1}^{\dagger} \right) \right\ _{p} & \left\{ \begin{array}{l} f_{2} \\ f_{1} \\ f_{2} \\ f_{3} $	$\begin{split} & \beta_{ab} \left\{ \left(f_{1}, f_{1}^{\dagger}, f_{-}, f_{-}^{\dagger} \right) = \begin{cases} f_{1} \\ f_{-} \\ f_{-} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$

OUR TRACK RECORD

In > 50 CSP studies, we have proven that the stable form is missing in 15-45% of the cases *Faraday Discussions*

doi.org/10.1039/C8FD00069G

Our calculations are accurate enough to identify missing forms beyond doubt *Nature Comm. Chemistry* doi.org/10.1038/s42004-019-0171-y

We suggest crystallization experiments off the beaten track to crystallize new forms *Nature Comm.* doi.org/10.1038/ncomms8793

CONTACT US IF YOU...

Fear the appearance of a lateappearing crystal form

Want to crystallize a novel form with improved properties

Need to solve the structure of a poorly crystallizing compound

Cannot crystallize your compound at all

Have to compare the relative stability of two experimental forms

Require novel algorithms to accelerate your research

Get your quote! GRACE

The most successful software package in the last three blind tests on organic Crystal Structures Prediction

> quotes@avmatsim.eu T + 49 (0)761 479984-0 www.avmatsim.eu

Avant-garde Materials Simulation Deutschland GmbH Local Court Freiburg HRB 701900 | Tax ID DE 259 132 789 Alte Straße 2 | 79249 Merzhausen | Germany CEOs Dr. Marcus Neumann, Elsa Gheziel M. A.

$$\begin{split} \left\{ L(\mathcal{L}_{1}^{1} \varepsilon^{+} \varepsilon^{+} \right)^{n} & \left\{ \begin{array}{l} \varepsilon^{+} \varepsilon^{+} \varepsilon^{-} \varepsilon^{-} \varepsilon^{+} \varepsilon^{$$